Blog Posts Process Analysis

Fraud Detection: Applying Behavioral Analytics

Blog: Enterprise Decision Management Blog

Hand holding analytics

This is the second in my series on five keys to using AI and machine learning in fraud detection. Key 2 is behavioral analytics.

Behavioral analytics use machine learning to understand and anticipate behaviors at a granular level across each aspect of a transaction. The information is tracked in profiles that represent the behaviors of each individual, merchant, account and device. These profiles are updated with each transaction, in real time, in order to compute analytic characteristics that provide informed predictions of future behavior.

Profiles contain details of monetary and non-monetary transactions. Non-monetary may include a change of address, a request for a duplicate card or a recent password reset. Monetary transaction details support the development of patterns that may represent an individual’s typical spend velocity, the hours and days when someone tends to transact, and the time period between geographically disperse payment locations, to name a few examples. Profiles are very powerful as they supply an up- to-date view of activity used to avoid transaction abandonment caused by frustrating false positives.

A robust enterprise fraud solution combines a range of analytic models and profiles, which contain the details necessary to understand evolving transaction patterns in real time. A good example of this occurs in our FICO Falcon Fraud Manager, with its Cognitive Fraud Analytics.

Given the sophistication and speed of organized fraud rings, behavioral profiles must be updated with each transaction. This is a key component of helping financial institutions anticipate individual behaviors and execute fraud detection strategies, at scale, which distinguish both legitimate and illicit behavior changes. A sample of specific profile categories that are critical for effective fraud detection includes:

Chart with seven types of behavioral analytics


Key 3 is distinguishing specialized from generic behavior analytics. Watch for that post, and follow me on Twitter @FraudBird.

For more information:

The post Fraud Detection: Applying Behavioral Analytics appeared first on FICO.

Leave a Comment

Get the BPI Web Feed

Using the HTML code below, you can display this Business Process Incubator page content with the current filter and sorting inside your web site for FREE.

Copy/Paste this code in your website html code:

<iframe src="" frameborder="0" scrolling="auto" width="100%" height="700">

Customizing your BPI Web Feed

You can click on the Get the BPI Web Feed link on any of our page to create the best possible feed for your site. Here are a few tips to customize your BPI Web Feed.

Customizing the Content Filter
On any page, you can add filter criteria using the MORE FILTERS interface:

Customizing the Content Filter

Customizing the Content Sorting
Clicking on the sorting options will also change the way your BPI Web Feed will be ordered on your site:

Get the BPI Web Feed

Some integration examples