Books Business Activity Monitoring Business Management Methodology

Big Data: Principles and best practices of scalable realtime data systems

Summary

Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they’re built.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Book

Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive.

Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You’ll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you’ll learn specific technologies like Hadoop, Storm, and NoSQL databases.

This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful.

What’s Inside

  • Introduction to big data systems
  • Real-time processing of web-scale data
  • Tools like Hadoop, Cassandra, and Storm
  • Extensions to traditional database skills

About the Authors

Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing.

Table of Contents

  1. A new paradigm for Big Data
  2. PART 1 BATCH LAYER
  3. Data model for Big Data
  4. Data model for Big Data: Illustration
  5. Data storage on the batch layer
  6. Data storage on the batch layer: Illustration
  7. Batch layer
  8. Batch layer: Illustration
  9. An example batch layer: Architecture and algorithms
  10. An example batch layer: Implementation
  11. PART 2 SERVING LAYER
  12. Serving layer
  13. Serving layer: Illustration
  14. PART 3 SPEED LAYER
  15. Realtime views
  16. Realtime views: Illustration
  17. Queuing and stream processing
  18. Queuing and stream processing: Illustration
  19. Micro-batch stream processing
  20. Micro-batch stream processing: Illustration
  21. Lambda Architecture in depth

Leave a Comment

Get the BPI Web Feed

Using the HTML code below, you can display this Business Process Incubator page content with the current filter and sorting inside your web site for FREE.

Copy/Paste this code in your website html code:

<iframe src="http://www.businessprocessincubator.com/content/big-data-principles-and-best-practices-of-scalable-realtime-data-systems/?feed=html" frameborder="0" scrolling="auto" width="100%" height="700">

Customizing your BPI Web Feed

You can click on the Get the BPI Web Feed link on any of our page to create the best possible feed for your site. Here are a few tips to customize your BPI Web Feed.

Customizing the Content Filter
On any page, you can add filter criteria using the MORE FILTERS interface:

Customizing the Content Filter

Customizing the Content Sorting
Clicking on the sorting options will also change the way your BPI Web Feed will be ordered on your site:

Get the BPI Web Feed

Some integration examples

BPMN.org

XPDL.org

×