Blog Posts

Top 7 Reasons Data Scientists Should Know Java Programming Language

Blog: Think Data Analytics Blog

Java is the #1 programming language for Big Data, Analytics, DevOps, and AI. It is consistently the first choice for developers working with data. The platform-independent programming language is robust, scalable, and reliable. Finding uses in data science, Java development services are in high demand among companies that are focusing on utilizing data for enterprise expansion and growth.

21% of data scientists use Java application development on a regular basis. It is the 5th most popular programming language for data, just after Python, SQL, R, and C/C++. While many developers use Python and R for Machine Learning applications, knowing Java is essential for data scientists as well. It has great uses in Machine Learning and Artificial Intelligence. 

Java is mostly used to put Machine Learning models into production. Even though Python is the most popular programming language for Machine Learning, it cannot easily engage in model production and is slow when it comes to execution. Therefore, Java can be advantageous to data scientists who frequently execute ML models. 

This article will address the top 7 reasons why data scientists should know Java. It will highlight how Java software development services enable enterprises and startups to take advantage of its versatility in Machine Learning development. 

7 reasons Java is Good for Data Science 

Some of the world’s best companies use Java, including Uber, Spotify, Airbnb, Wikipedia Search and more. It offers a plethora of services that developers can build using different IDEs and integrate Machine Learning models in them. Data Science is one field that requires a lot of heavy lifting, which means it needs a programming language that survives that. Java programmers build the most complex applications with ease.

Here are 7 reasons why data scientists should know Java application development – 

Wrapping Up

Java is an amazing programming language for data scientists due to its scalability, versatility, and flexibility. There are a lot of features and tools that they can use to build Machine Learning models and deploy them with ease. Any Java development company can create Machine Learning solutions by using the tools & technologies that the programming language has to offer.

Original Source

The post Top 7 Reasons Data Scientists Should Know Java Programming Language appeared first on Big Data, Data Analytics, IOT, Software Testing, Blockchain, Data Lake – Submit Your Guest Post.

Leave a Comment

Get the BPI Web Feed

Using the HTML code below, you can display this Business Process Incubator page content with the current filter and sorting inside your web site for FREE.

Copy/Paste this code in your website html code:

<iframe src="https://www.businessprocessincubator.com/content/top-7-reasons-data-scientists-should-know-java-programming-language/?feed=html" frameborder="0" scrolling="auto" width="100%" height="700">

Customizing your BPI Web Feed

You can click on the Get the BPI Web Feed link on any of our page to create the best possible feed for your site. Here are a few tips to customize your BPI Web Feed.

Customizing the Content Filter
On any page, you can add filter criteria using the MORE FILTERS interface:

Customizing the Content Filter

Customizing the Content Sorting
Clicking on the sorting options will also change the way your BPI Web Feed will be ordered on your site:

Get the BPI Web Feed

Some integration examples

BPMN.org

XPDL.org

×