Blog Posts

IoT Testing Approach on Devices

Blog: Indium Software - Big Data

Data has become pivotal to any business today. A huge amount of data is generated at various touch points through myriads of interconnected devices. Collecting this data is crucial; in this blog, we will discuss the Internet of Things (IoT), southbound–embedded devices, and gateways. These two parts of IoT are called southbound. The one from cloud and UI is called northbound.

Sensors and gateways fetch real-time data from multiple entities, including people, vehicles, machines, and drones. With the gateway failing to capture data, data is lost forever. So, robust gateway testing capabilities are paramount in south bound for the proper functioning of gateway.

Contact us for your software testing needs and more!

Get in touch

The importance of gateway testing lies in ensuring that the data is not lost and the gateway devices do not go into a dead state. Also, it helps to ensure that all the possible exceptional cases accounting for the loss of the internet connectivity to the cloud and the data from sensor are considered.

We will go in-depth into the technicalities of gateway testing. Before that, let’s glimpse different types of sensors and the importance of gateways in the IoT.

What are different sensors used across industries?

Embedded devices (sensors) are different for different domains, as we see below:

Each embedded device is a data source, and there will be data either from a single source or from a large field. This data must be gathered and harnessed without any loss and sent to the cloud by Gateways devices. The information is then used in performing analysis. Hence, Gateways are the heart of the IoT system.

Gateway devices and their importance

Gateway devices are the central hubs for IoT devices, where data is collected at the edge device locally before sending it to the cloud. Gateways interconnect devices within the IoT. These are important bridges that connect the IoT sensor network and cloud. Reasons why gateway devices are key:

How to test gateway in the IoT?

Some gateways require a lot of synchronization, scheduling, and buffering mechanisms, mostly when huge data is collected. On the other hand, a few require nothing but a simple microcontroller unit with a GSM connection to send data. What is important is how the gateway firmware is managed to run all the time without losing any data. Gateways are different for different domains. Here we will go into the details of gateway testing by understanding different scenarios.

The sole purpose of gateway testing in IoT is to address as many worst cases as possible. Let’s take the example of cellular tower testing.

In the event of AC power loss, the diesel engine source will give power to the tower so that data is not lost. The gateway will monitor the sensor data from the AC power source, which will be collected continuously. Whenever there is no data from the source of AC, the possible scenarios are:

Let’s look at in detail:

The above-described scenarios are mostly functional and related to data validation. So, the testing of the above involves functional validation and verification. There will be many test cases here in which a suitable automated tool to simulate all kinds of sensor data can be used to ensure smooth functionality.

Testing Gateway for IoT: Some facts to consider

Lately, the testing of IoT is test-driven on live data. There are specific tools used for simulating data as expected from the field and verifying the results and effects the data can cause to the existing system. There might be legacy systems where IoT sensor integration would have been done for value addition. For such cases, these tools shall help for testing and analyzing the results without disturbing the legacy system and live data. These are similar to a replica of the field environment which are also helpful for OEM.

In any case of data loss, the gateway must be intelligent enough to detect the exact reason and raise an alert accordingly. When thousands of data sources are there, the data handling capacity of the system can be ascertained by testing. Testing will be crucial in getting an idea about the maximum number of sensors the gateway can handle.

Apart from regular testing of sending message notifications from the SIM on the device, there are cases where the field person might install a SIM, which also allows for incoming data messages. The SIM will be receiving incoming messages, and the memory will be loaded on the SIM; and hence the actual functionality to send the data notification might not be possible. Such cases require boundary analysis and exploratory testing.

When a gateway has been running for years without any problems and stops working due to the Wi-Fi process, it reboots itself. For such single process cases, the gateway should not restart itself, but the process which stopped alone shall restart softly and ensure that there is a seamless connection. Testing in such cases shall add value to the performance of the gateway.

There are performance conditions which shall lead to gateway crash, like when there is a huge request of data from the cloud, and in case the process fails to manage and send the full information as requested, those things can be simulated by tools and verified. Generally, the gateway functionality is tested by shell scripts and automating with the same.

With respect to configuring the firmware, what is important for the verification team is to ensure that only a valid configuration set is allowed while configuring and proper detailed guidance or information is given to complete the same. Here regression testing helps to verify all sets of configurations. Testing helps verify that the same configuration set has been configured on the cloud. So, there is smooth data transmission from the gateway to the cloud. These configuration sets are those which will help for the segregation of scheduled and alarm data from data sources. The historical data will help to build an AI-based predictive maintenance process. These are the actual IoT testing services which are of business value.

The value gateway testing brings to business

The testing of a gateway is like an endless ocean. But the key is approaching the test by categorizing its requirement according to the domain. However, the main tests are performed to give reports on failure (gateway down). As many exceptions and alerts due to gateway failure are known, it is required for us to reach the device remotely to fix the error. If the gateway runs on the filed for longer period, exceptions will keep adding as seen in the firmware updates.

Finally, what are the uses of reports and insights graphics if the data is not valid? Does invalid or lower performance data make sense to business? Instead of adding value, would it lead to a loss? Testing helps address all these questions. So, gateway in IoT requires robust testing.

The post IoT Testing Approach on Devices appeared first on Indium Software.

Leave a Comment

Get the BPI Web Feed

Using the HTML code below, you can display this Business Process Incubator page content with the current filter and sorting inside your web site for FREE.

Copy/Paste this code in your website html code:

<iframe src="https://www.businessprocessincubator.com/content/iot-testing-approach-on-devices/?feed=html" frameborder="0" scrolling="auto" width="100%" height="700">

Customizing your BPI Web Feed

You can click on the Get the BPI Web Feed link on any of our page to create the best possible feed for your site. Here are a few tips to customize your BPI Web Feed.

Customizing the Content Filter
On any page, you can add filter criteria using the MORE FILTERS interface:

Customizing the Content Filter

Customizing the Content Sorting
Clicking on the sorting options will also change the way your BPI Web Feed will be ordered on your site:

Get the BPI Web Feed

Some integration examples

BPMN.org

XPDL.org

×